
First experiences with Large Scaled Scrum
https://howtosurviveasaprogrammer.blogspot.com/2019/04/first-experiences-with-large-scaled.html
(also see Marcell's excellent followup article at
https://howtosurviveasaprogrammer.blogspot.com/2019/10/experiences-with-large-scaled-scru
m.html​)
by ​Marcell Lipp
Two months ago I started at a new company. At this company we are following a working model
which is much different than anything else I experienced before. This working model is called
Large Scaled Scrum (LeSS). At the beginning it was very strange for me, it was totally against
the mindset I had before. Right now I think I could already change my mindset partially, but I still
have a lot of challenges.

What is LeSS?
LeSS is an Agile framework which is scaling Scrum for really huge projects. It is trying to keep
the organization as simple as possible without a big hierarchical system. It is mostly following
the classical Scrum events (sprint planning 1-2, daily standup, retrospective, review, backlog
refinement etc.). Main values the are multifunctional, self-leading teams, learning and flexibility.
You can find more info on page ​https://less.works/​.

What does it mean in practice?
What I am describing now is the adaptation used in our organization. It can be that it is
sometimes differing from the official theory of LeSS.
As I started at the company I became an official LeSS practitioner by taking part on a 3 day long
training. Here I became familiar with the whole theory. Afterwise I joined an already existing
team.
Our team has 8 developers and a scrum master who is also taking part in the development. Our
task is basically end-to-end development: clarifying the tasks, architectural decisions,
development, testing etc. The main concept is that none of the tasks are assigned to individual
developers, they are all assigned to the team. Usually we have less tasks than team members
and we are doing pair or mob programming (programming in a team). That means we are not
usually sitting alone in front of the computer. The goal is that all team members should have an
overview on all topics which are done by the team. The responsibility is also shared within the
team.

Why is it so strange for me?

https://howtosurviveasaprogrammer.blogspot.com/2019/04/first-experiences-with-large-scaled.html
https://howtosurviveasaprogrammer.blogspot.com/2019/10/experiences-with-large-scaled-scrum.html
https://howtosurviveasaprogrammer.blogspot.com/2019/10/experiences-with-large-scaled-scrum.html
https://www.codeproject.com/Members/RelaxedProgrammer
https://less.works/

I have been already working in working models where I had my own task, which I was
responsible for, I needed to implement it, I needed to hold the due date and if there was a bug in
my code I was responsible to fix it. Additionally in the last time I was a technical leader in my
project, so I was also responsible for the work of others. One hand I enjoyed this kind of
responsibility, it made me feel good to tell that: “this is a functionality implemented by myself”,
on the other hand it was of course stressful as well.
In this current working structure it is not the case anymore. On most of the tasks we are working
with 2-3 team mates. Really often the code is note written on my computer, it is not pushed with
my name. I am not feeling myself so much responsible anymore.
It also involves an other big difference in the way of working: earlier I was often sitting alone in
front of my computer, listening to music and not talking to other hours long. It is not the case
anymore. 90% of my time is about communication, sitting with someone and talking about the
problems. I totally did not use to do it in this way.
In fact I’m learning a lot about different topics, working on many tasks, but I will never become
the expert of the topic, I will never become the owner of a functionality.

What are the advantages of LeSS?
There are several advantages of this way of working what I can see. For example, due to the
shared knowledge and responsibility, if someone becomes sick or has a holiday that does not
have a big effect on the results of the work: the others have also all the knowledge, so they can
just continue from where it was finished on the day before. And anyway multiple people are
working on the same topic, so minus one does not make a big difference.
It also saves a lot of efforts at knowledge transfer. I had always bad experiences with situations
when someone left the team: all his collected knowledge needed to be transferred to the others,
it took a long time and it was not always effective.
In this model it is also easier to give tasks for junior colleagues: they can join the more
experienced colleagues and learn very fast.
Due to the lot of pair and mob programming the code quality is also better and a lot of good
ideas are coming up during talking about the tasks.
Also by lacking hierarchy the company is saving all costs of having multi-level management.
The stress caused by due dates is also pretty clear less and the time spent by randomly surfing
on the internet in working time is also much less due to the pair programming.
So I can see pretty clear advantages of this way of working.

What are the biggest disadvantages?
On the other hand it reminds me a bit on the theory of socialism: shared responsibility,
everybody is just doing his best. But in the end no one is really feeling himself responsible for
holding the due dates, solving problems or making technical decisions. Really often we are just
talking hours long about alternative solutions and no one is there to finalize the decisions, so we
are just talking and talking and not making a clear decision.
I’m also lacking the career opportunities: in classical working structures there are hundreds of
roles which can be overtaken and which are making some changes, some step further into the
career, here I can not see much of them.
I’m also lacking the feeling that I can tell: “it is my code”. Maybe it’s childish, but that’s what I
feel.
I also have issues with the communications: there are so many communication channels, that it
is really difficult for me to collect all the relevant information.
I also have the feeling that the project is really lacking someone who has a good technical
overview on the whole project, like a software architect. When we need to use an interface
really often no one can tell us which interface is it and a lot of interface are duplicated.
Last but not least I would like to mention that the permanent pair and mob programming is really
exhausting. It is really difficult. The team members needs very good social skills and a lot of
patient, which is not typical for most of the programmers.

Summary

I didn’t expect that this change will be so big for me, it was also surprising for me that a working
model can be so different from everything I experienced before. With time I’m changing my
mindset and my feelings regarding this working model is also changing permanently. I am often
asked if I think it is more effective, than classical way of working? To be really honest, I have no
idea. We are loosing time by assigning multiple people to one task, but we are winning a lot of
time by reducing review and knowledge transfer time. I would like to also clarify that these are
my personal experiences, other developers may have different opinion about this way of
working. I plan to write again about this working model after several months, maybe my opinion
will change again.

Disadvantages Enumerated For Exercise

1. But in the end no one is really feeling himself responsible for holding the due dates.
2. [But in the end no one is really feeling responsible for] solving problems.
3. [But in the end no one is really feeling responsible for] making technical decisions.
4. Really often we are just talking hours long about alternative solutions and no one is there

to finalize the decisions, so we are just talking and talking and not making a clear
decision.

5. I’m also lacking the career opportunities: in classical working structures there are
hundreds of roles which can be overtaken and which are making some changes, some
step further into the career, here I can not see much of them.

6. I’m also lacking the feeling that I can tell: “it is my code”. Maybe it’s childish, but that’s
what I feel.

7. I also have issues with the communications: there are so many communication
channels, that it is really difficult for me to collect all the relevant information.

8. I also have the feeling that the project is really lacking someone who has a good
technical overview on the whole project, like a software architect. When we need to use
an interface really often no one can tell us which interface is it and a lot of interface are
duplicated.

9. Last but not least I would like to mention that the permanent pair and mob programming
is really exhausting. It is really difficult. The team members needs very good social skills
and a lot of patient, which is not typical for most of the programmers.

